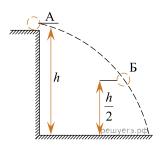
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

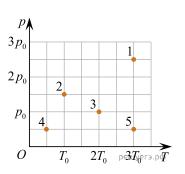
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Установите соответствие между каждой физической величиной и её характеристикой. Правильное соответствие обозначено цифрой:

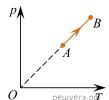

	А. Путь Б. Работа В. Сила	 скалярная величина векторная величина 	
1) А1 Б1 В2	2) А1 Б2 В1	3) A1 Б2 B2 4) A2 Б1 B	5) A2 Б2 В1

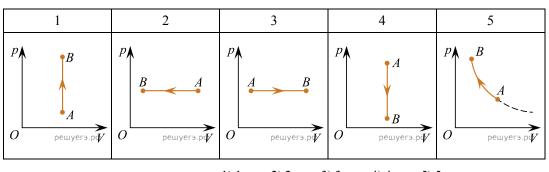
2. В момент времени $t_0 = 0$ с два тела начали двигаться вдоль оси Ox. Если их координаты с течением времени изменяются по законам $x_1 = -15t - 1.9t^2$ и $x_2 = 6t - 2.5t^2$ (x_1, x_2 — в метрах, t — в секундах), то тела встретятся через промежуток времени Δt , равный:

3. По параллельным участкам соседних железнодорожных путей в одном направлении равномерно двигались два поезда: пассажирский и товарный. Модуль скорости пассажирского поезда $\upsilon_1=44~\frac{\mathrm{KM}}{\mathrm{q}}$, товарного – $\upsilon_2=80~\frac{\mathrm{KM}}{\mathrm{q}}$. Если длина товарного поезда $L=0,60~\mathrm{km}$, то пассажир, сидящий у окна в вагоне пассажирского поезда, заметил, что он проехал мимо товарного поезда за промежуток времени Δt , равный:

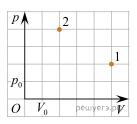

4. На поверхности Земли на тело действует силя тяготения, модуль которой $F_1=144$ Н. Если это тело находится на расстоянии $R=2R_3$ (R_3 — радиус Земли) от центра Земли, то на него действует сила тяготения, модуль которой F_2 равен:

5. С некоторой высоты h в горизонтальном направлении бросили камень, траектория полёта которого показана штриховой линией (см. рис.). Если в точке B полная механическая энергия камня W=12,0 Дж, то в точке A после броска она равна:



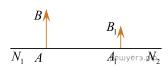

6. Вдоль резинового шнура распространяется волна со скоростью, модуль которой $V=1,5\,$ м/с. Если период колебаний частиц шнура $T=0,80\,$ с, то минимальное расстояние l_{\min} между частицами, колеблющимися в одинаковой фазе, равно:

7. На p-T диаграмме изображены различные состояния идеального газа. Состояние с наибольшей концентрацией n_{\max} молекул газа обозначено цифрой:

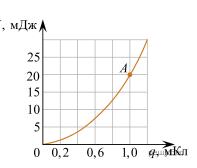

8. С идеальным газом, количество вещества которого постоянно, провели процесс AB, показанный в координатах (p, T). Этот же процесс в координатах (p, V) изображён на графике, обозначенном цифрой:


1) 1; 2) 2; 3) 3; 4) 4; 5) 5.

9. Идеальный газ, количество вещества которого постоянно, перевели из состояния 1 в состояние 2 (см. рис.). Если в состоянии 1 температура газа $T_1=400~{\rm K}$, то в состоянии 2 температура газа T_2 равна:

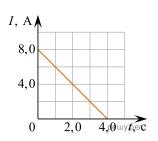


- 1) 1000 K 2) 800 K 3) 500 K 4) 320 K 5) 200 K
- **10.** Если при трении эбонитовой палочки о шерсть на ней появились избыточные электроны общей массой $m = 27,3 \cdot 10^{-19}$ кг, то палочка приобретет заряд q равный:
 - 1) -100 нКл
- 2) -150 нКл
- 3) -240 нКл
- 4) -340 нКл
- 5) -480 нКл
- **11.** Тело, которое падало без начальной скорости $(v_0 = 0 \frac{M}{C})$ с некоторой высоты, за последние три секунды движения прошло путь s = 105 м. Высота h, с которой тело упало, равна ... м.
- **12.** Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 7.0 м, B = 4.0 м/с, C = 1.0 м/с². Если масса тела m = 4.0 кг, то в момент времен t = 3.0 с мгновенная мощность P силы равна ... **Вт**.
- **13.** Тело свободно падает без начальной скорости с высоты h=17 м над поверхностью Земли. Если на высоте $h_1=2,0$ м кинетическая энергия тела $E_{\rm K}=1,8$ Дж, то масса m тела равна ... ${\bf r}$.
- **14.** На невесомой нерастяжимой нити длиной l=1,28 м висит небольшой шар массой M=58 г. Пуля массой m=4 г, летящая горизонтально со скоростью $\vec{\mathcal{V}}_0$, попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости υ_0 пули, равном ...**м/с** .


- **15.** В баллоне находится идеальный газ массой $m_1 = 3$ кг. После того как из баллона выпустили m = 750 г газа и понизили абсолютную температуру оставшегося газа до $T_2 = 340$ K, давление газа в баллоне уменьшилось на $\alpha = 40,0$ %. В начальном состоянии абсолютная температура T_1 газа была равна ... **K**
- **16.** Вокруг планеты по круговым орбитам движутся два спутника. Радиус орбиты первого спутника в k=1,44 раза больше радиуса орбиты второго спутника. Если период обращения первого спутника $T_1=36,4$ суток, то период обращения T_2 второго спутника равен ... суток (сутки).
- 17. К открытому калориметру с водой (L=2,26 $\frac{\text{МДж}}{\text{кг}}$) еже- t, °C секундно подводили количество теплоты Q=59 Дж. На рисунке представлена зависимость температуры t воды от времени τ . Начальная масса m воды в калориметре равна ... Γ .

- **18.** На горизонтальной поверхности Земли стоит человек, возле ног которого лежит маленькое плоское зеркало. Глаза человека находятся на уровне H = 1,8 м от поверхности Земли. Если угол падения солнечных лучей на горизонтальную поверхность $\alpha = 45^{\circ}$, то человек увидит отражение Солнца в зеркале, когда он отойдёт от зеркала на расстояние l, равное ... дм.
- **19.** Двадцать одинаковых ламп, соединенных параллельно, подключили к источнику постоянного тока с ЭДС $\varepsilon = 120~\text{B}$ и внутренним сопротивлением r = 0,60~Ом. Если сопротивление одной лампы $R_1 = 36~\text{Ом}$, то напряжение U на клеммах равно ... **B**.
- **20.** Тонкое проволочное кольцо радиусом r = 4,0 см и массой m = 98,6 мг, изготовленное из проводника сопротивлением R = 90 мОм, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x = kx$, где k = 2,0 Тл/м, x координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0 = 5,0$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... **см**.
- **21.** К электрической сети, напряжение в которой изменяется по гармоническому закону, подключена электрическая плитка, потребляющая мощность $P=900~\mathrm{Bt}$. Если действующее значение напряжения на плитке $U_\mathrm{д}=127~\mathrm{B}$, то амплитудное значение силы тока I_0 в сети равно ... **A**.
- **22.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=10 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|=100\,$ пКл) шарик массой $m=380\,$ мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=19,0\,$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами $E=100\,$ кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- **23.** Стрелка AB высотой H=4,0 см и её изображение A_1B_1 высотой h=2,0 см, формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=16$ см, то модуль фокусного расстояния |F| линзы равен ... см.

24. График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке A на графике соответствует напряжение U на конденсаторе, равное ... В.



25. Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.

26. Электрическая цепь состоит из источника тока, внутреннее сопротивление которого $r=0,50~{\rm OM},$ и резистора сопротивлением $R=10~{\rm OM}.$ Если сила тока в цепи $I=2,0~{\rm A},$ то ЭДС $\mathcal E$ источника тока равна ... В.

27. Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{H\cdot c}{M}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{M}{c}$.

28. На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7,0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\operatorname{tg}\beta}{\operatorname{tg}\alpha}=\frac{5}{2},$ то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.